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Abstract
Weight averaging has become a standard compo-
nent of the state-of-the-art generative adversarial
networks, like BigGAN (Brock et al., 2018). The
exponential moving average (EMA) of the gener-
ator’s parameters typically produces samples of
higher visual quality and with better mode cover-
age compared to non-averaged weights. However,
this advantage of EMA is currently not fully ex-
ploited since averaged parameters are used only
for evaluation and do not influence the GAN train-
ing process. In this work, we demonstrate that the
EMA parameters can also guide the training, lead-
ing to significantly higher performance. In partic-
ular, we introduce a simple (three lines of code)
model-agnostic modification of the GAN training
protocol and empirically show that it improves
generation quality on established benchmarks, in-
cluding Imagenet. Furthermore, we explain how
the proposed EMA training alleviates the disjoint
supports problem and theoretically prove its local
convergence on a simplified task.

1. Introduction
Nowadays, the state-of-the-art Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) are able to pro-
duce diverse photorealistic images, what makes them an
important ingredient in a wide range of applications, in-
cluding image-to-image translation (Isola et al., 2017; Zhu
et al., 2017), super-resolution (Ledig et al., 2017; Menon
et al., 2020), video generation (Wang et al., 2018), editing
via latent transformations (Zhu et al., 2016) and many oth-
ers. Compared to alternative generative models (Kingma
& Welling, 2014; Rezende & Mohamed, 2015), however,
GANs are more challenging to train since their adversarial
optimization process is prone to vanishing gradients, mode
collapse, oscillating or cyclic behavior (Goodfellow, 2016).

Since the seminal paper on GANs (Goodfellow et al., 2014),
a plethora of different methods to simplify GAN training
have been proposed, including the development of stable ar-
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chitectures (Radford et al., 2015; Karras et al., 2018; Zhang
et al., 2019a; Brock et al., 2018; Karras et al., 2020), al-
ternative loss functions (Arjovsky et al., 2017; Nowozin
et al., 2016; Mao et al., 2017), appropriate normalizations,
regularizers, and other helpful tricks (Salimans et al., 2016;
Arjovsky & Bottou, 2017; Gulrajani et al., 2017; Metz et al.,
2017; Miyato et al., 2018; Sinha et al., 2020; Peng et al.,
2019; Zhang et al., 2019b; Zhao et al., 2020; Chen et al.,
2019; Wang et al., 2020). Among such tricks, using the ex-
ponential moving average (EMA) of generator’s parameters
(Gidel et al., 2019; Karras et al., 2018) is one of the most suc-
cessful and is currently employed by state-of-the-art GANs,
e.g., BigGAN (Brock et al., 2018), and StyleGAN (Karras
et al., 2020).

In essence, EMA computes the exponentially weighted run-
ning average of the generator’s weights over the training
iterations. Despite its simplicity, EMA generators produce
more realistic samples and provide better mode coverage
(Yaz et al., 2019), compared to non-averaged generators.
However, this advantage is not fully leveraged by existing
training protocols since EMA does not affect them and is
used only for evaluation.

Meanwhile, for discriminative models, the EMA parameters
have already established themselves as an important source
of self-supervision. For instance, in the semi-supervised
setup, EMA can produce targets to train models on unla-
beled data (Tarvainen & Valpola, 2017). For learning from
noisy labels, EMA is used to filter out unreliable samples
(Nguyen et al., 2019). Finally, very recently, the supervi-
sion from EMA was used to develop BYOL (Grill et al.,
2020), a new state-of-the-art approach for self-supervised
pretraining. In this paper, we show that EMA can guide
GAN optimization as well.

In a nutshell, we propose to supervise the GAN training by
both real images and EMA samples. To this end, in each
training batch, we replace a portion of real images with
images generated by the current EMA. This simple mod-
ification, which we refer to as LeakyEMA, can be univer-
sally applied to any GAN architecture or loss function and
provides consistent improvements on the standard datasets,
including BigGAN on Imagenet.

LeakyEMA is motivated by the prior observations that fake
and real distributions often have non-overlapping supports,
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which is a well-known problem in the GAN community
(Sønderby et al., 2017; Arjovsky & Bottou, 2017). In this
case, discriminators cannot produce reliable gradients, and
the training process becomes slow and unstable. We argue
that the problem of disjoint supports can be substantially
mitigated by using EMA samples “to bridge” the real and
fake distributions, which is illustrated on Figure 1. Under
this perspective, LeakyEMA can be considered as a smart
version of the instance noise trick (Sønderby et al., 2017;
Arjovsky & Bottou, 2017), where EMA images effectively
serve as noisy samples from the real distribution. While sev-
eral previous works have successfully addressed the instabil-
ity caused by disjoint supports, we show that LeakyEMA is
complementary to them and provides significant gains even
on top of the state-of-the-art BigGAN model.

From the theoretical standpoint, we analyze the local conver-
gence of LeakyEMA by examining the Jacobian eigenvalues
of the associated gradient vector field. On the illustrative
Dirac-GAN task (Mescheder et al., 2018), we prove that all
Jacobian eigenvalues have negative real-part at the Nash-
equilibrium, therefore, LeakyEMA is locally convergent.

To sum up, the contributions of our paper are the following:

1. We propose LeakyEMA — a simple and universal
regularizer that significantly improves the performance
of the state-of-the-art GANs, which is confirmed by
extensive experiments on a wide range of datasets.

2. We explain the connection between LeakyEMA, the
disjoint supports problem, and the instance noise trick.
In particular, LeakyEMA can be treated as an advanced
variant of instance noise with higher sample-efficiency.

3. We theoretically prove the local convergence of train-
ing with LeakyEMA on a simplified task.

2. Related work
In this section, we position our work in the context of the
relevant literature.

Stable GAN training is a long-standing challenge for the
computer vision community. Over the years, it has been
addressed from several sides, including both theoretical and
empirical efforts. A fruitful research line develops GAN
architectures that allow for more stable optimization (Rad-
ford et al., 2015; Karras et al., 2018; Zhang et al., 2019a;
Brock et al., 2018; Karras et al., 2019; 2020). Other works
investigate alternative loss functions for generators and dis-
criminators (Arjovsky et al., 2017; Nowozin et al., 2016;
Mao et al., 2017; Li et al., 2017). However, this research di-
rection has been shown to be less promising since the recent
large-scale comparison (Lucic et al., 2018) has demonstrated
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Figure 1. Samples produced by the BigGAN generator on the
100k-th training step (top), samples produced by the EMA gen-
erator on the same step (middle), real samples from Imagenet
(bottom). The EMA samples are more realistic and provide a
natural “bridge” between the real and generator’s distribution.
that under fair comparison, all loss functions result in simi-
lar performance. Finally, a large amount of normalizations,
regularizers, and other heuristics have been proposed (Sali-
mans et al., 2016; Arjovsky & Bottou, 2017; Gulrajani et al.,
2017; Miyato et al., 2018; Metz et al., 2017; Tolstikhin et al.,
2017; Peng et al., 2019; Tao & Wang, 2020).

Disjoint supports problem is an important insight on the
instability of GANs (Sønderby et al., 2017; Arjovsky &
Bottou, 2017). When the supports of the data and model
distributions do not overlap, the discriminator can achieve
perfect classification, which results in vanishing gradients
for the generator. (Sønderby et al., 2017; Arjovsky & Bot-
tou, 2017) alleviate this problem by using the instance noise
trick, which “spreads out” the distributions via adding con-
tinuous Gaussian noise to both real and fake samples. Such
a solution results in a meaningful overlap between the sup-
ports, however, since the noise is isotropic, most of noisy
samples do not belong to this overlap, and one requires
large batches to obtain a sufficient amount of “hard” sam-
ples for the discriminator. In our paper, we propose a more
sample-efficient way to avoid disjoint supports by using
EMA samples “to connect” the data and model distribu-
tions. Note that previous works also investigate alternative
approaches to prevent the discriminator from perfect classi-
fication, e.g., via additional penalty terms or normalizations.
In experiments, we confirm their complementarity to our
approach by showing LeakyEMA to provide an additional
performance boost even on top of the established stabilizing
techniques.

Weight averaging in GANs has been investigated only re-
cently, from both theoretical (Gidel et al., 2019; Yaz et al.,
2019) and empirical perspectives (Karras et al., 2018). At
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the moment, it is employed by the state-of-the-art mod-
els, e.g., BigGAN and StyleGAN2, which use exponential
moving average (EMA) generator’s parameters for evalua-
tion. However, to the best of our knowledge, EMA samples
are not currently used to guide the training process by any
means, and we address this gap in our paper.

EMA training of discriminative models. Very recently,
the EMA parameters were shown to provide useful super-
vision signal to train discriminative models (Tarvainen &
Valpola, 2017; Nguyen et al., 2019; Grill et al., 2020). For
instance, in the context of semi-supervised learning, enforc-
ing the consistency of predictions with the weight-average
models significantly improves classification accuracy (Tar-
vainen & Valpola, 2017). BYOL (Grill et al., 2020), a very
recent method, also exploiting the idea of mean teacher
prediction, was shown to provide the state-of-the-art perfor-
mance of the self-supervised pretraining. Overall, the idea
that the models, which parameters are averaged over previ-
ous epochs, can reliably guide the training process appears
to be successful. In this paper, we show that it shines in the
context of GAN training as well.

3. Method
3.1. Preliminaries

Let us consider a GAN consisting of a generator G and a
discriminator D. As its input, G receives samples from a
prior distribution z ∼ p(z) and aims to approximate the
target distribution pd(x). On the other hand, D is trained
to discriminate between the samples from pd(x) and the
samples produced by G. G and D are trained jointly in
an adversarial fashion. More formally, the GAN training
process performs a joint optimization of two objectives:

θ∗D = argmin
θD

LD(pd(x), pG(x; θ
∗
G); θD);

θ∗G = argmin
θG

LG(pd(x), pG(x; θG); θ
∗
D);

(1)

where LD is an objective function designed to improve the
ability of D to discriminate between real and fake images,
while LG is designed to achieve the opposite. Since it is dif-
ficult to satisfy both conditions simultaneously, the training
typically proceeds in an alternating fashion by performing
several gradient steps on LD followed by gradient steps
on LG. Our method does not require any specific design
for LD or LG and can be used with any existing objectives
(Goodfellow et al., 2014; Arjovsky et al., 2017; Mao et al.,
2017).

3.2. Exponential Moving Average of Weights

An additional trick that is widely used in practice is to
accumulate the weights of generator G during training with
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Figure 2. Training with LeakyEMA. The trainable components are
denoted by blue, the images labeled as “real” are denoted by green.

an exponential moving average, i.e.

θEMA
G ← αθEMA

G + (1− α)θG. (2)

Then on the inference stage, one can use these accumulated
weights θEMA

G to generate fake samples. This simple modi-
fication gives a significant boost in performance on top of
the state-of-the-art models (Brock et al., 2018; Karras et al.,
2020), which is attributed to the widely known instability
and oscillating behavior of adversarial training, that is still
present in up-to-date models (Berard et al., 2020).

3.3. From the evaluation-only EMA to Mean Teacher

The superior quality of θEMA
G is widely used during evalua-

tion but is not used for training. Now we propose to exploit
it inside the discriminator training step by replacing a subset
of real images with the ones generated by GEMA. Formally,
our modified objective is the following:

θ∗D = argmin
θD

LD(p̃d(x), pG(x; θ
∗
G); θD);

θ∗G = argmin
θG

LG(p̃d(x), pG(x; θG); θ
∗
D);

(3)

where p̃d(x) is a mixture of two distributions:

p̃d(x) = βpGEMA(x; θ
EMA
G ) + (1− β)pd(x). (4)

where β determines the portion of the real images replaced
by the EMA samples in each training batch. We refer to
this modification of the training protocol to as LeakyEMA.
Training with LeakyEMA is schematically presented on
Figure 2 and can be easily implemented with a few lines
of code. Note that on each training step, the same noise
samples z are used for both G and GEMA. In experiments,
we observed that for large-scale tasks, it is necessary to use
LeakyEMA on the later epochs, since on the earlier epochs,
the EMA samples are poor and cannot reliably guide the
training. Therefore, LeakyEMA is used only after the N -
th training iteration, where N is a hyperparameter of our
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method. We ablate on both β and N and provide recipes on
setting them in the experimental section.

3.4. Computational complexity

Since LeakyEMA requires several EMA samples for each
training batch, each optimization step has a minor com-
putational overhead compared to the conventional GAN
training. Note, however, that this overhead includes only a
forward pass in the EMA generator and does not increase
the complexity of backward passes in both generator and
discriminator. Moreover, the overhead appears only on the
latter iterations, while the first N iterations have the same
complexity. Overall, in all our experiments, the increase in
total training time is negligible and was fully justified by
the superior generation performance.

3.5. LeakyEMA vs Instance Noise

In this section, we explain the relationship between the pro-
posed LeakyEMA training and the well-known instance
noise (IN) trick (Sønderby et al., 2017; Arjovsky & Bot-
tou, 2017). Both LeakyEMA and IN are motivated by the
disjoint supports problem when the model and data dis-
tributions do not overlap. In this case, it is easy for the
discriminator to achieve perfect classification, which results
in vanishing gradients for the generator, therefore, in slow
and unstable optimization. IN mitigates this problem by
adding isotropic Gaussian noise to both real and fake im-
ages, which effectively creates a noticeable overlap of the
“spreaded” distributions, containing samples that are diffi-
cult for the discriminator. However, in high-dimensional
spaces, only a small amount of noisy samples fall into this
overlap due to the isotropy of noise, therefore, most of the
samples still will be “easy” for the discriminator. In con-
trast, LeakyEMA is based on the previous evidence (Karras
et al., 2018; Brock et al., 2018; Karras et al., 2019) that
EMA samples are more appealing compared to the gener-
ator samples (see Figure 1). In other words, in terms of
realism, EMA samples are “intermediate” between real and
fake images, therefore, it is natural to use them to create the
overlap between distributions.

To confirm the intuition above, we consider the follow-
ing synthetic task that represents a disjoint supports setup.
We set both real and generated distributions to be mul-
tidimensional Gaussians in R32 with uniform covariance
matrices. The real data distribution is the Gaussian with
pdata = N (0, 0.1 · I), while the generated data distribu-
tion is set to be pG = N (µ, 0.1 · I) with the learnable
generator parameter µ. The discriminator model is de-
fined by a linear map D(x) = 〈x, ξ〉 + b with parame-
ters ξ and b. We use the standard GAN loss (Goodfel-
low et al., 2014) LG = Ex∼pG log(1 − σ(D(x))), LD =
−Ex∼pG log(1−σ(D(x)))−Ex∼pdata

log(σ(D(x))) where

σ is the sigmoid function. In three of the four runs below we
use a training batch size 2. The optimization is performed
with the four following setups:

• Default training with no instance noise or LeakyEMA;

• Instance Noise with the starting noise variance equal 3.
During the training, the variance anneals linearly to 0;

• Instance Noise with a huge batch equal to 1024 and all
other parametrs the same as above;

• LeakyEMA with β = 0.5 and N = 0.

In all setups, we initialize the generated distribution with
µ0 = (1, . . . , 1)T . The discriminator parameters are picked
from the normal distribution with the same values for all
runs. EMA is computed with a coefficient equals 0.99. We
perform the adversarial training with 5 discriminator steps
per generator step in SGD optimization protocol with a learn-
ing rate 0.05. In all the runs, we perform 5000 generator
optimization steps. For the Instance Noise, we report the run
with the hyperparameters that demonstrated the best score
from the parameters grid-search. The training curves are
presented on Figure 3 (left), which demonstrates that both
default and IN training are slower compared to LeakyEMA.
Figure 3 (right) provides an explanation of this behavior by
demonstrating the distributions of the discriminator outputs
for all setups on a particular training iteration. For both
default and Instance Noise training, most of the generator
samples are easily “rejected” by D, which results in vanish-
ing gradients for G. In contrast, with our approach, D is
less confident, indicating that LeakyEMA is a more efficient
way to prevent D from perfect classification.
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Figure 3. Left: norms of the learnable generated distribution mean
µ for different setups. Right: probabilities distributions of the
generated samples σ(D(G(z))) on the step 200.

3.6. Local Convergence with LeakyEMA

For theoretical understanding of the regularization effect
stemming from LeakyEMA, we follow (Mescheder et al.,
2018) that considers the behaviour of GANs with various
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regularizers on a simple 1-dimensional problem, and demon-
strates that not all of the methods are locally convergent
with gradient descent. Using the same analysis, we study
the gradient vector field associated with the GAN training
dynamics and demonstrate theoretically that LeakyEMA is
locally convergent. In particular, we prove that all Jacobian
eigenvalues of the field have negative real-part in the neigh-
borhood of the Nash-equilibrium. Full proofs are provided
in supplementary.

4. Experiments
In this section, we evaluate LeakyEMA on a large number
of common benchmarks. First, we investigate its sensitiv-
ity to hyperparameters and perform a thorough ablation
analysis. Second, we demonstrate that LeakyEMA can be
successfully combined with established stabilization tech-
niques. Finally, we show that using LeakyEMA on top of
the BigGAN model (Brock et al., 2018) provides a new
state-of-the-art generation quality on Imagenet. For quan-
titative evaluation, we use the Frechet Inception Distance
(FID) (Heusel et al., 2017) computed on the image repre-
sentations extracted from the InceptionV3 model1. Unless
stated otherwise, we always report the quality of samples
produced by the EMA generator.

4.1. Ablation and sensitivity to hyperparameters

In this part, we use the ResNet-SNGAN (Miyato et al.,
2018) architecture, which generates 128× 128 images, orig-
inally proposed in (Miyato et al., 2018) (see table 6a) . We
use Ndis=5 discriminator updates per single generator step.
The optimization is performed by Adam with a constant
learning rate of 2× 10−4 and β1=0.5, and we accumulate
the generator weights in the EMA version with α=0.999.
Training with LeakyEMA proceeds in two stages. During
the first stage, we train GAN in the conventional way for N
steps with a Hinge variant of adversarial training objective
(Miyato et al., 2018) and a batch size of 64. After N steps,
the second stage starts, where the EMA samples replace a
portion of real images in each training batch.

Sensitivity to β and N . First, we investigate how
LeakyEMA performs with different values of β and N hy-
perparameters. The complete evaluation of SNGAN on
the LSUN-Church dataset (Yu et al., 2015) is provided in
Table 1. All the models are trained for 250K generator
optimization steps, and we report mean and std values com-
puted for five independent runs. The key observations from
Table 1 are highlighted below:

• LeakyEMA generally benefits generation performance
in a wide range of β values. The lowest FID obtained

1https://github.com/mseitzer/pytorch-fid

N β = 0 β = 0.25 β = 0.5 β = 0.75

FID
80k 7.94± 2.40 5.33± 0.45 4.21± 0.21 5.05± 0.63

100k 7.94± 2.40 5.26± 0.47 4.15± 0.31 5.01± 0.61

120k 7.94± 2.40 5.25± 0.47 4.17± 0.24 4.83± 0.35

140k 7.94± 2.40 6.13± 1.83 5.62± 2.52 6.06± 2.04

Table 1. Performance of SNGAN trained on LSUN-Church dataset
(128x128) with different values of β and N . β=0 corresponds
to training without LeakyEMA, therefore, numbers in the second
column are the same.
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Figure 4. Comparison of FID learning curves for the conventional
training and the training with LeakyEMA on the LSUN-Church
with β = 0.5 and N = 100K.

with LeakyEMA is about four, while the best FID ob-
tained with conventional training (β = 0) is about
eight.

• By varying β, one can interpolate between the conven-
tional training (β = 0) and pure self-training (β = 1),
which always collapsed in our experiments. In our
experiments, β = 0.5 appears to be a “sweet spot”
in terms of FID; therefore, we use this value in the
following experiments.

• In Table 1, we consider only N values that are close
to the moment when a learning curve of the conven-
tional training starts to slide down slowly, as shown
in figure 4. Intuitively, at this moment, EMA samples
are already good enough to serve as a supervision sig-
nal, but the model has not collapsed yet. Typically,
LeakyEMA is not sensitive to N chosen within this
region. However, too large N values (N = 140k) cor-
respond to partially collapsed models, which results in
inferior FID. In general, LeakyEMA increases gener-
ation quality for all N chosen after the training curve
decline slows down.

The learning curves in terms of FID for both the con-
ventional GAN training and the LeakyEMA training with

https://github.com/mseitzer/pytorch-fid
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Baseline

(no EMA)

EMA

sync

EMA

async-noise

EMA

async-model

FID 7.93 4.15 4.16 5.85

Table 2. Performance of different versions of LeakyEMA of
SNGAN on the LSUN-Church dataset.

β=0.5, N=100K are presented on Figure 4. Note that the
learning curve with LeakyEMA has smaller FID fluctua-
tions, implying more stable training.

Should EMA be “synced” with the generator? In princi-
ple, one could perform the conventional GAN training until
convergence and then use the obtained EMA using its sam-
ples to train a new generator with our technique. Despite
longer training, such protocol could be reasonable, since in
this case, EMA samples have higher quality compared to
the EMA samples from intermediate steps, thus, it could
provide more reliable supervision. Nevertheless, we show
that this “async” strategy is inferior to the setup when the
generator and its EMA version are updated synchronously.
In particular, we compare three possible versions of training
with LeakyEMA:

1. EMA-sync, a fully synchronized version, where train-
ing is guided by the samples from the current EMA.
The previous experiments were performed with this
version.

2. EMA-async-noise, the same as above, but on each
training iteration, different noise samples are used to
produce fake images from the generator and EMA.
Note that in the EMA-sync version, the same noise
samples are always used.

3. EMA-async-model, a version where the previously
pretrained (fixed) EMA is used to guide the training on
all iterations.

The performance of three different versions is reported in
Table 2, which demonstrates that the asynchronous EMA-
async-model protocol is inferior in terms of FID. These
results highlight the importance of synchronicity between
the current generator and the corresponding EMA, which
is crucial for EMA samples to serve as a “connection” of
the model and data distributions. While the synchronicity
of the noise samples does not affect the LeakyEMA perfor-
mance, we recommend using the EMA-sync version due to
simplicity of implementation.

Are EMA samples necessary? To verify that EMA sam-
ples in our approach cannot be replaced by the samples
from the generator itself, we perform the following exper-
iment. Instead of using EMA samples to replace a por-

SNGAN

SNGAN + LeakyEMA

Figure 5. Samples of SNGAN trained on LSUN-Bedroom in con-
ventional (top) and LeakyEMA protocols (bottom). We use
N = 80K and β=0.5. Here we present samples from the best
checkpoints obtained from both protocols and use the same latent
noise samples.
tion of a real images, we tried to use (a) random generator
samples (b) generator samples that are “the most realistic”
for the current discriminator. We use ResNet-SNGAN on
LSUN-Church with N=100K and β=0.5. With both (a)
and (b), the performance was equal or inferior to the ResNet-
SNGAN trained in a conventional manner. This experiment
provides additional evidence that the superiority of EMA
over the generator is a key ingredient of the LeakyEMA
success.

4.2. LeakyEMA and other regularizers

In this experiment, we show that LeakyEMA can be com-
bined with established stabilization techniques. In particular,
we evaluate the training with LeakyEMA using the WGAN-
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SNGAN standard training

SNGAN + LeakyEMA

N = 80K

Figure 6. Evolution of a generated sample G(z) with a fixed z. Top row: conventional training; bottom row: EMA training, which reduces
the sample variation over the training steps, while improving realism.

Model Church Bedroom FFHQ

WGAN-GP 9.51 12.66 —

WGAN-GP+LeakyEMA 8.62 11.61 —

SNGAN 7.93 13.48 14.80

SNGAN+LeakyEMA 4.15 4.67 11.87

Table 3. Training with LeakyEMA combined with previous stabi-
lization techniques.

GP (Gulrajani et al., 2017) and the SNGAN (Miyato et al.,
2018) models. For a fair comparison, we use the same model
architecture as described in Section 4.1. The exact hyperpa-
rameter values are provided in supplementary. We compare
the models on three datasets from different domains. In this
experiment, all images were resized to 128× 128.

1. LSUN-Church (Yu et al., 2015) containing outdoor
scene images with multiple details, challenging to gen-
erate properly.

2. LSUN-bedroom (Yu et al., 2015), containing indoor
images of bedrooms.

3. FFHQ (Karras et al., 2019), containing human face
images.

Comparison of WGAN-GP and SNGAN with the conven-
tional and LeakyEMA training on three datasets is presented
in Table 3. For all experiments, we choose N to be the it-
eration corresponding to the lowest FID obtained in the
conventional protocol, but not larger than 140k. “—” in a
table cell denotes that WGAN-GP did not converge on the
dataset.

In all datasets, LeakyEMA provides a significant perfor-
mance boost both in terms of FID and subjective visual
quality. Figure 5 compares uncurated SNGAN samples
from the models trained with conventional and LeakyEMA
training protocols. The same latent codes are used for both
models.

On Figure 6, we illustrate the evolution of a particu-
lar sample during the conventional training and during
the LeakyEMA training (with N=80K and β=0.5) for
SNGAN trained on Bedroom. To produce the top row, we
consider a checkpoint of the generator at the step N=80K,
where the LeakyEMA training starts, and train it indepen-
dently with β = 0. Notably, our technique stabilizes the
sample variability over training steps and also increases
its quality. To confirm the stabilization effect quantita-
tively, we perform the following. For both conventional
and LeakyEMA training, we compute the LPIPS distance
(Zhang et al., 2018) between the fake images correspond-
ing to the same latent code z produced by generators from
the consecutive training iterations. LPIPS values averaged
over 5000 samples are shown on Figure 7, which illustrates
“smoother” image evolution stemming from LeakyEMA.

4.3. BigGAN

This section confirms that LeakyEMA can be used on top of
the state-of-the-art BigGAN generator (Brock et al., 2018)
and significantly improves its generation quality on the chal-
lenging Imagenet benchmark. In this experiment, we use
the publicly available PyTorch implementation of BigGAN2.
Figure 8 illustrates the learning curves of the BigGAN train-
ing with and without LeakyEMA. BigGAN+LeakyEMA sig-
nificantly outperforms the conventional training, achieving

2https://github.com/ajbrock/
BigGAN-PyTorch

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/ajbrock/BigGAN-PyTorch
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Figure 7. Evolution of generated images with fixed z for SNGAN
trained on Bedroom. Average LPIPS distance between 5000 sam-
ples generated from the same latent codes on the consecutive
training iterations.
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Figure 8. The learning curves of BigGAN training on the Ima-
genet dataset. Comparison of the conventional training and the
LeakyEMA training for with β = 0.75 and N = 120K.

a new state-of-the-art of FID=8.86. Notably, the learning
curve of the conventional training demonstrates the collaps-
ing behavior, a well-known issue of BigGAN. In contrast,
LeakyEMA results in more stable training progress, achiev-
ing much lower FID values and avoiding the collapse.

We compare our best configuration with the state-of-the-
art checkpoint provided by the BigGAN authors3 in Ta-
ble 6. Along with FID, we use Precision and Recall metrics
(Kynkäänniemi et al., 2019) computed with embeddings
from Imagenet-pretrained VGG. The BigGAN trained with
LeakyEMA achieves significantly higher Recall, indicating
that our LeakyEMA improves the model coverage.

For a more detailed comparison of two BigGAN models,
we plot the Precision-Recall curves in Figure 9 obtained
by varying a truncation value in a range [0.3, 1.0] (Brock
et al., 2018), which is a standard way to quantify the quality-
diversity tradeoff. The BigGAN+LeakyEMA outperforms
the standard BigGAN across all operating points.

3https://drive.google.com/file/d/
1nAle7FCVFZdix2--ks0r5JBkFnKw8ctW/view
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Figure 9. The Precision-Recall curves from varying truncation val-
ues linearly from 0.3 to 1.0 for the best model obtained with
LeakyEMA and the publicly available BigGAN.

FID Precision Recall

Imagenet 128× 128

BigGAN 10.14 0.92 0.21

BigGAN+LeakyEMA 9.20 0.91 0.24

Table 4. Comparison of the model trained with LeakyEMA and
the publicly available state-of-the-art BigGAN checkpoint.

https://drive.google.com/file/d/1nAle7FCVFZdix2--ks0r5JBkFnKw8ctW/view
https://drive.google.com/file/d/1nAle7FCVFZdix2--ks0r5JBkFnKw8ctW/view


Mean Teachers Can Train Superior GANs

5. Conclusion
Despite the recent progress on stabilizing GANs, the train-
ing of large-scale models on complex multi-modal datasets,
e.g., Imagenet, is still challenging. In this work, we have
proposed a simple modification of the GAN training pro-
tocol that leverages an additional supervision signal from
the generator parameters averaged over previous optimiza-
tion steps. Being both simple and efficient, our technique
results in substantial empirical improvements on the con-
sidered benchmarks, including Imagenet. Furthermore, the
proposed approach allows for certain theoretical guarantees
of local convergence. We expect that given the simplicity
and empirical success, an idea of using mean teachers for
GANs can be elaborated further from both practical and
theoretical standpoints.
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P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., et al. Bootstrap your own latent: A
new approach to self-supervised learning. NeurIPS, 2020.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in neural information processing systems,
pp. 5767–5777, 2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems, pp. 6626–6637,
2017.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. In International Conference on Learning Rep-
resentations, 2018.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4401–4410, 2019.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. Analyzing and improving the image quality
of stylegan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8110–
8119, 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), 2nd Interna-
tional Conference on Learning Representations, ICLR
2014, 2014.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and
Aila, T. Improved precision and recall metric for assess-
ing generative models. In Advances in Neural Information
Processing Systems, pp. 3929–3938, 2019.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
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A. Theoretical convergence of LeakyEMA
To analyze the training with LeakyEMA theoretically, we
consider the Dirac-GAN problem, a one-dimensional gener-
ative task proposed in (Mescheder et al., 2018). Namely, in
the Dirac-GAN, the model distribution pG = δθ is concen-
trated at a single point, and the generator is parameterized
by a scalar θ. The discriminator D is defined by a linear
map θ → ψ · θ with a learnable multiplier ψ. The data
distribution is defined by the Dirac δ0 function. The genera-
tor and discriminator are updated with alternating gradient
steps by θ with respect to the generator loss LG and by
ψ with respect to the discriminator loss LD. (Mescheder
et al., 2018) proposed to analyze existing GAN regulariza-
tion techniques in terms of the dynamics of such gradient
updates when a gradient step tends to zero. In this case, the
dynamics correspond to the first-order differential equation:

(
θ̇

ψ̇

)
=

(
−∇θLG
−∇ψLD

)
. (5)

Here we always write the dot as a derivative with respect
to the parameter t. First, we define the exponential moving
average (EMA) of a continuous function θ(t) with a decay
factor α ∈ (0, 1). Note that for the discrete case, EMA for
a sequence θ1, . . . , θk is computed as

θEMA
k = (1− α) · θk + α · θEMA

k−1 =

= (1− α) · (θk + αθk−1) + α2 · θEMA
k−2 =

· · · = (1− α) ·
k∑
i=1

αk−iθk; (6)

where we set θEMA
1 = (1 − α) · θ14. Following (6), we

naturally define the EMA of the continuous trajectory as

θEMA(t) = (1− α)
t∫

0

αt−sθ(s)ds. (7)

4Since its impact on θEMA
k tends to 0 as k grows, this initial-

ization is not important in practice.

For simplicity, below we focus on the nonsaturating ob-
jective functions LG and LD (Goodfellow et al., 2014)5 :

LG = ϕ(ψθ);

LD = ϕ(−ψθ) + ϕ(ψ · 0); (8)

with ϕ(x) = − log(σ(x)) = log(1 + e−x). The origi-
nal work (Mescheder et al., 2018) showed that the Dirac-
GAN (5) with this loss has a single equilibrium point
(θ∗, ψ∗) = (0, 0). Depending on the loss functions, so-
lutions of (5) in the neighborhood of this equilibrium either
do not converge or converge with a sub-linear rate. In this
setup, the objectives appearing from LeakyEMA are of the
form:

LEMA
G = ϕ(ψθ);

LEMA
D = ϕ(−ψθ) + β · ϕ(ψθEMA);

(9)

where β ∈ (0, 1) is the fraction of real samples replaced by
EMA samples. Here we omit the term (1− β) · ϕ(ψ · 0) in
the discriminator loss as it is constant and does not affect the
gradients. The main result of this section is the following

Lemma 1. All the integral curves in the neighborhood of
the equilibrium point (0, 0) of the Dirac-GAN (5) with the
LeakyEMA objectives (9) converge to this equilibrium point
with a linear rate.

Proof. First, we consider a new variable
u=αt

∫ t
0
α−sθ(s)ds corresponding to the scaled EMA

generator. Its derivative can be computed as

u̇(t) = αt · (α−tθ(t)) + log(α) · αt ·
∫ t

0

α−sθ(s)ds =

= θ(t) + logα · u(t). (10)

Now let us consider an extended first-order system of differ-
ential equations for the Dirac-GAN: θ̇ψ̇

u̇

 =

 −∇θLEMA
G

−∇ψLEMA
D

θ(t) + logα · u(t)

 . (11)

Note that the point (θ∗, ψ∗, u∗) = (0, 0, 0) is the equilib-
rium point of this system. Furthermore, each solution of
the original system (5) defines a solution of the extended
system. Thus, it is sufficient to show that all the integral
curves of the extended system converge to the equilibrium.
We will show it by verifying that all the eigenvalues of the
Jacobian of the vector field (11) have negative real parts.

5However, all the calculations below can be also performed for
other existing objectives with minimal changes.
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Figure 10. Comparison of the conventional and LeakyEMA proto-
cols trajectories of Dirac-GAN. We depict the initial state, and the
trajectories of (θ, ψ) and (θEMA, ψ).

We start with the first two components of (11). First, let us
note that ϕ′(x) = 1

1+ex = 1
2 − x

4 + o(x2). Then we have

− ∇θLEMA
G = ψ · ϕ′(ψθ) = ψ · (1

2
− O(ψθ)), (12)

and similarly

−∇ψLEMA
D =

= −θ · ϕ′(−ψθ) + β · θEMA · ϕ′(ψθEMA) =

= −θ · (1
2
+O(ψθ)) + β · (1− α) · u · 1

1 + eψ(1−α)u
=

= −θ
2
+ β · (1− α) · u · (1

2
+O(ψu)). (13)

Combining (11), (12) and (13) we can write the Jacobian J
of the extended system at the equilibrium point (0, 0, 0):

J =

 0 1
2 0

− 1
2 0 β·(1−α)

2
1 0 logα

 . (14)

This is a 3× 3 matrix and we can explicitly find its eigen-
values in a closed-form solution. We omit the exact formula
as it was computed within a symbolic solver and requires
an enormous number of lines. For all the β ∈ (0, 1) and
α ∈ (0, 1) all real parts of its eigenvalues appear to be
negative.

Figure 16 demonstrates the dynamics of the conventional
trajectories of the Dirac-GAN and the trajectories for
LeakyEMA protocol, illustrating the statement of the
Lemma 1.

On Figure 11 we visualize the maximal real part of the com-
puted Jacobian eigenvalues for different parameters α and β.
As Lemma 1 remains true for the Wasserstein loss, we also
provide a similar plot for this objective.
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Figure 11. Maximum real parts of the Jacobian eigenvalues for the
nonsaturating loss (left) and the Wasserstein loss (right).

We refer to Section 2.1 in (Mescheder et al., 2018) for further
details on the relationship between continuous and discrete
GAN dynamics and the Dirac-GAN model.

B. Models hyperparameters
Here we report the hyperparameters for the SNGAN and
WGAN-GP models from Section 4.2. For both SNGAN and
WGAN-GP, we use five discriminator steps per one genera-
tor step, and the generator and discriminator are optimized
by Adam with batch size 64. SNGAN is optimized with
a constant learning rate 2× 10−4 and β1, β2 = 0.5, 0.999.
WGAN-GP is optimized with a constant learning rate 10−4

and β1, β2 = 0.5, 0.9 and with a gradient penalty coeffi-
cient equal to ten. For WGAN-GP, we observed that the
best LeakyEMA performance corresponds to β=0.25. The
generator and discriminator architectures used for WGAN-
GP are the networks described in tables 6a, b in (Miyato
et al., 2018) without spectral normalization.

C. More qualitative results
Figure 12 and Figure 13 illustrate images generated from
the same noise samples by SNGAN trained with the conven-
tional and LeakyEMA training protocols.

Figure 14 illustrates the uncurated samples from the “Broc-
coli”, “Volcano” and “Slot” classes produced by two Big-
GAN models. For these classes, the LeakyEMA training
protocol results in the largest improvement of generation
performance, as confirmed by the corresponding FID values.
Notably, for these classes, the BigGAN with LeakyEMA
provides much higher sample diversity. We also report the
conditional precision and recall calculated for the selected
classes only.

D. Other results
We train WGAN-GP with learning rate 1e − 4 and betas
(0.0, 0.9). See Table 5.
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SNGAN

SNGAN + LeakyEMA

Figure 12. Uncurated samples of SNGAN trained on LSUN-
Church with conventional (top) and LeakyEMA protocols (bottom).
We use N=100K and β=0.5. Here we present samples from the
best checkpoints obtained from both protocols and use the same
latent noise samples.

Model Church Bedroom FFHQ

WGAN-GP 12.16 7.72 —

WGAN-GP+LeakyEMA 10.19 7.12 —

SNGAN 7.93 13.48 14.80

SNGAN+Lookahead 6.06 — —

SNGAN+LeakyEMA 5.00 4.67 11.87

Table 5. Comparison of SNGAN with alternative techniques
(LeakyEMA on Church is still decreasing).

SNGAN

SNGAN + LeakyEMA

Figure 13. Uncurated samples of SNGAN trained on FFHQ with
conventional (top) and LeakyEMA protocols (bottom). We use
N=60K and β=0.5. Here we present samples from the best
checkpoints obtained from both protocols and use the same latent
noise samples.
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BigGAN 
(FID = 45.8, P = 0.947, R = 0.086) 

BigGAN + LeakyEMA
(FID = 45.7, P = 0.928, R = 0.147) 

BigGAN
(FID = 50.3, P = 0.915, R = 0.056)

BigGAN + LeakyEMA
(FID = 36.3, P = 0.909, R = 0.099)

BigGAN
(FID = 98.4, P = 0.866, R = 0.03)

BigGAN + LeakyEMA
(FID = 64.3, P = 0.938, R = 0.04)

Figure 14. Conditional samples for the BigGAN trained in the conventional protocol (left) and LeakyEMA protocol (right). Here we
present uncurated samples for the “Volcano”, “Broccoli” and “Slot” classes. We also report conditional FID, Precision (P) and Recall (R).
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IS FID Precision Recall Density Coverage

Imagenet 128× 128

BigGAN 101.75 10.28 0.918 0.214 2.059 0.901

BigGAN+LeakyEMA 105.04 8.86 0.907 0.253 2.093 0.920

Cifar 32× 32

BigGAN 9.30 12.47 0.843 0.491 1.379 0.923

BigGAN+LeakyEMA 9.87 11.15 0.694 0.678 0.680 0.837

Table 6. Additional metrics for comparison of the model trained
with LeakyEMA and the default.
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Figure 15. The FID-IS curves from varying truncation values lin-
early from 0.3 to 1.0 for the best model obtained with LeakyEMA
and the publicly available BigGAN.

E. Rebuttal

Figure 16. Comparison of the default (upper, FID= 12.47) and
LeakyEMA (lower, FID= 11.15) random BigGAN samples on
Cifar dataset.
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Figure 17. Comparison of the default (upper, FID= 12.47) and
LeakyEMA (lower, FID= 11.15) random BigGAN samples on
Cifar dataset.


