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Abstract

Adversarial training is currently one of the leading paradigms in large-scale generative modelling. For

problems like image generation, it corresponds to the family of Generative Adversarial Networks (GANs)

that jointly train two networks — generator and discriminator — to produce artificial images from the

random noise and to distinguish between real and artificial samples.

However, the applicability of GANs is significantly limited due to the mode collapse — a phenomenon

when the model fits only a subset of the training distribution. Additionally, they suffer from the unstable

optimization process that could invalidate outputs of the generator in just a few gradient steps and fail to

converge even when the model is ε-close to the equilibrium.

In this thesis, we notice that in most GANs, a significant improvement in the mode coverage is obtained

by smoothing the weights of a generator during training and then generating samples at test time

with a network having smoothed weights (generator-EMA). Inspired by the self-distillation methods of

semi-supervised learning like Mean Teacher, we propose a simple modification, called LeakyEMA, which

additionally exploits outputs of generator-EMA during training.

We prove its benefits theoretically on a simplified problem and draw connections with other stabilization

techniques. Extensive experiments on a wide range of datasets and models demonstrate the superiority of

our method over existing approaches. Namely, on a challenging Imagenet generation task, LeakyEMA

improves Frechet Inception Distance (FID) — a metric of visual quality and diversity – by 12.7 percents

on a state-of-the-art BigGAN architecture. It also consistently improves Spectral-Normalized GANs on

various LSUN subsets by 20− 40 percents and StyleGAN-2 model on a Cifar-10 dataset by 6.5 percents.

1



Аннотация (Summary in Russian)

Состязательное обучение в настоящее время является одной из ведущих парадигм в крупномасштаб-

ном генеративном моделировании. Для таких задач, как генерация изображений, оно соответствует

семейству генериративных состязательных сетей (GAN-ы), которые совместно обучают две сети

— генератор и дискриминатор — для генерации искусственных выборок из случайного шума и

различения реальных и искусственных выборок.

Однако применимость GAN-ов значительно ограничена из-за коллапса мод — явления, когда обучен-

ная модель генерирует только подмножество обучающего распределения. Кроме того, они страдают

от нестабильного процесса оптимизации, который может сделать недействительными выходы гене-

ратора всего за несколько градиентных шагов и не сойтись, даже если модель находится ε-близко к

состоянию равновесия.

В этой работе мы замечаем, что в большинстве GAN-ов значительное увеличение числа покрытых

мод достигается за счет сглаживания весов генератора во время обучения, а затем генерации выборок

во время тестирования с помощью сети, имеющей сглаженные веса ("усредненный генератор").

Вдохновленные методами само-дистилляции для обучения с небольшим количеством разметки,

таких как Mean Teacher, мы предлагаем простую модификацию под названием LeakyEMA, которая

дополнительно использует выходы усреднённого генератора во время обучения.

Мы доказываем её преимущества теоретически на упрощенной задаче и проводим связи с дру-

гими методами стабилизации. Обширные эксперименты на большом числе датасетов и моделей

демонстрируют превосходство нашего метода над существующими подходами. А именно, в сложной

задаче создания искусственных изображений на данных Imagenet, LeakyEMA улучшает Frechet

Inception Distance — метрику визуального качества и разнообразия — на 12.7 процентов используя

наилучшую на данный момент архитектуру BigGAN. Она также стабильно улучшает качество

спектрально-нормализованных GAN-ов для различных подмножеств датасета LSUN на 20 − 40

процентов и модель StyleGAN-2 на датасете Cifar-10 на 6.5 процентов.
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1 Introduction

1.1 Generative Modeling

Explicit Implicit

One-pass Variational [33], Normalizing Flows [54] Adversarial [21], Latent optimization [7]

Iterative Autoregressive [51], Denoising [25] Energy-based [15], Gradient estimation [26]

Table 1: Dichotomies of existing generative families. The focus of this work is in bold.

Generative modelling is a problem where one wishes to construct an explicitly defined process that

produces samples of the unknown distribution represented by some (limited) set of examples [20].

More formally, given an (unknown) distribution p(x) and a dataset {xi : xi ∼ p(x)}Ni=1 we are interested

in training a (stochastic) process Gθ parameterized by θ that receives some random input z sampled from

a fixed distribution p0(z) (e.g. standard normal) and outputs x̂ = Gθ(z) that is “realistic” in terms of

p(x). Moreover, we require that a pushforward distribution p̂θ(x) defined by transferring p0(z) through

Gθ is “close” to p(x): ∀x ∈ supp(p) p̂θ(x) , p0({z : Gθ(z) = x}) ≈ p(x).

Depending on the training method, we may either obtain pθ in the explicit form, which would correspond

to the explicit generative modelling, or only get a (parameterized) sampler from pθ, which corresponds to

the implicit generative modelling. Additionally, one could obtain x̂ with a single forward pass on a neural

network or through an iterative process that uses one or multiple neural networks to progressively “get

closer” to the desired distribution p.

Therefore, we could separate the space of existing approaches by two attributes — whether they are

explicit or implicit, and whether they are one-pass or iterative, as shown in table 1.1. In this thesis, we

focus on implicit one-pass generative modelling, which is motivated by two reasons.

First, while iterative methods outperform one-pass in quality, they are currently much more computationally

demanding [8]. Furthermore, they are less interpretable because one has to reason about a process where

for a given layer of a neural network, its representations influence not just the outputs of subsequent layers

but also the features on previous layers during the next inference steps.

Second, models with explicit density usually rely on some form of encoder that maps real images in a

latent space Z and are learned to maximize likelihood or its estimates on training data. Currently, it is

not clear whether maximum likelihood is the desired objective in the first place [63, 13], as well as whether

a single network pass could implement sufficiently powerful encoding for a given G [3]. We could address

the second problem by restricting G to be invertible [54], but this reduces its representation capacity and

increases computational demands.

Hence in the subsequent sections, we consider only one-pass implicit models.
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1.2 Generative Adversarial Networks

For the problem of implicit generative modelling, a leading paradigm nowadays is a Generative Adversarial

Network (GAN) [19].

It solves this task in a game-theoretic manner by noticing that if two samplers model different distributions

we could train a sufficiently powerful network D (discriminator) to separate them (e.g. via binary

classification). As such, a good sampler G (generator) is the one for which the trained discriminator would

be bad at solving the separation task. This gives us the following objective:

θ̂ = argmin
θ

max
ψ

V (Gθ, Dψ; pX), (1)

where θ and ψ are trainable parameters of the generator and discriminator respectively, pX is the empirical

distribution of a given dataset X and V is some discriminator objective that forces it to separate training

and generated data, e.g. log-likelihood in a binary classification task:

V (Gθ, Dψ; pX) = Ez∼p0(z)ϕ(−Dψ(Gθ(z))) +
1

|X|
∑
xi∈X

ϕ(Dψ(xi)), ϕ(t) = log σ(t) = log[
1

1 + e−t
].

Note that maximization of V wrt D forces it to output low scores Dψ(x) on artificial inputs and large

scores on natural images. By minimizing the obtained solution wrt G we force it to “fool” D into believing

that generated images also have large scores, which for a sufficiently good discriminator is only possible

when distributions p(x) and p̂θ(x) match [21].

Although simple and promising, this method has several drawbacks.

The first is that for training it with gradient descent, we need to differentiate the worst-case objective V

wrt θ, which is intractable in the general case as it requires optimizing D for many steps until convergence.

Even worse, the ideal discriminator Dψ∗ can produce vanishing gradients for G without additional

regularizations [4]. This is possible whenever the distributions p and p̂θ have disjoint supports, which is

often the case in high-dimensional problems [5].

A partial remedy for this is that in practice, G and D are usually trained in an alternating fashion against

their previous states, which gives the following trajectory: ψ̂t = ψ̂t−1 + γ ∂V∂ψ (Gθ̂t−1
, Dψ̂t−1

; pX);

θ̂t = θ̂t−1 − γ ∂V∂θ (Gθ̂t−1
, Dψ̂t

; pX);

(2)

where γ is a learning rate, and the updates are performed until convergence.

This method is called Gradient Descent-Ascent (GDA), and its stable points are different from the stable

points of (1), which correspond to the Nash equilibria [27]. Surprisingly, GDA can produce reasonable

solutions even when the “ideal” GAN fails [16, 17], which is attributed to its implicit regularization
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Figure 1: Trajectories of various adversarial methods on a toy one-dimensional Dirac problem [43]. Here,

the ground truth distribution is given by δ0, the generator is formulated as δθ, and the discriminator is

linear: Dψ(x) = ψx. We train models with (from left to right): the original adversarial objective (1),

alternating gradient descent (2), GDA with a nonsaturating objective (3).

effects [57]. Nevertheless, it is believed that the quality of gradients provided by D at the G update step

is far from optimal [39, 70, 58].

The second drawback of generative adversarial training is its instability or “cycling behaviour”. This issue

arises because neither (1) nor (2) may be formulated in terms of gradient descent on a single objective.

As such, even when V is convex wrt θ and ψ, the Jacobian eigenvalues of their gradients may have a large

imaginary part, which means that the joint trajectory of (θ, ψ) will rotate around the equilibrium [6, 43].

We demonstrate an example of this in Figure 1.

A minor modification that addresses this is to replace a shared function V with a pair of individual losses

LG, LD that yield slightly less rotation. For instance, [21] proposes to use: LD(Gθ, Dψ; pX) = Ez∼p0(z)ϕ(−Dψ(Gθ(z))) +
1
|X|

∑
xi∈X ϕ(Dψ(xi));

LG(Gθ, Dψ) = Ez∼p0(z)ϕ(Dψ(Gθ(z))),

(3)

which is called a nonsaturating objective. Additionally, many existing regularization techniques for GANs

implicitly reduce this cycling behaviour, as we discuss in section 2.

The third drawback of adversarial training is its tendency towards degenerate solution referred to as mode

collapse [32, 44, 60]. A mode collapse occurs when the generator learns to mimic only a subset of the

training data, while the discriminator focuses on distinguishing high-level features of this particular subset

and thus penalizes the generator if it tries to improve its diversity at the cost of lower quality of individual

samples. This high-level intuition serves as a motivation for our approach described in section 3.

Despite those issues, the state-of-the-art GANs [9, 29] are able to produce diverse photorealistic images on

challenging domains, which makes them an important ingredient in a wide range of applications, including

image editing [72, 1, 64], unsupervised representation learning [14, 67], inverse rendering [52, 71], saliency

detection [65, 2, 41], super-resolution [42] and many others. This puts additional weight on the importance

of solving aforementioned drawbacks.
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2 Related Work

2.1 GAN Regularizations

Stable GAN training is a long-standing challenge in the computer vision community. Over the years, it

has been addressed from several sides, including architectural changes [53, 30, 70, 9, 28, 29], different loss

functions [5, 49, 37, 38], alternative optimization methods [12, 45, 66, 10, 11] and regularizers for both

generator [29, 50] and discriminator [46, 23, 59, 43, 55] objectives.

The recent extensive comparisons [40, 35] demonstrate that under an equal hyperparameter budget with

fixed architecture, the most significant benefits come from the use of discriminator regularizations. This is

because there are many imperceptible details by which training and generated distributions may differ

and usually discriminator overfits and labels even validation data as fake [31]. It is one of the sources

of “cycling behaviour” since even when the generator is optimal, but the training distribution is not

achievable, the discriminator provides non-zero gradients, and the system deviates from the “equilibrium”.

Instance noise (IN) [59, 4] addresses this problem by adding isotropic Gaussian noise to both real and fake

images during the discriminator step. We can view it as a simple data augmentation that effectively creates

a noticeable overlap of the “spread” distributions, containing challenging samples for the discriminator.

As a result, it simultaneously reduces the gap between training and optimal fake distributions, stabilizing

the model around equilibrium and fixes the problem of disjoint supports.

One of the difficulties in IN is that convergence is only guaranteed in expectation, i.e. with a fixed batch,

we need to average gradients across many noise samples added to inputs. Gradient penalties [23, 43,

55] avoid this by considering first-order analytical approximations of this expectation, which we can

minimize heuristically by enforcing the discriminator gradient norms to remain constant across different

inputs [55]. They also have roots in the famous Wasserstein objective [4, 5], which prevents the divergence

by restricting the Lipschitz norm of the discriminator.

An alternative regularization approach is Spectral Normalization [46], which dynamically rescales weights

based on the estimates of their largest singular value, thus forcing all the layers to stay 1-Lipschitz.

We view our work as an extension of the original IN approach that uses a “smarter” version of the noising

distribution, as discussed in section 3. We also found the benefits of it to be cumulative with those of

gradient penalties and spectral normalization (see section 4).

2.2 Parameter smoothing and Mean Teacher

Parameter smoothing is a simple trick that significantly improves model performance in different problems.

The idea is to average the parameters along their training trajectory, which may be implemented in two

ways — either by taking the mean of last k steps or by accumulating their moving average with a decay

coefficient α. More formally, the exponential moving average parameters θEMA of the model to be used

7
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Figure 2: Samples produced by the BigGAN generator on the 100k-th training step (top), samples produced

by the EMA generator on the same step (middle), real samples from Imagenet (bottom). The EMA

samples are more realistic and provide a natural “bridge” between the real and generator’s distribution.

during evaluation are updated after every training step of original parameters θ in the following way:

θEMA,t ← αθEMA,t−1 + (1− α)θt.

Very recently, the EMA parameters were shown to provide useful supervision signal to train discriminative

models [62, 48, 22]. For instance, in the context of semi-supervised learning, enforcing the consistency

of predictions with the weight-average models significantly improves classification accuracy [62]. BYOL

[22], a very recent method, also exploiting the idea of mean teacher prediction, was shown to provide the

state-of-the-art performance on self-supervised pretraining.

In the context of GANs, the benefits of weight averaging have been investigated only recently, from both

theoretical [18, 68] and empirical standpoints [30]. At the moment, it is employed by state-of-the-art

models, e.g., BigGAN and StyleGAN2, which use the exponential moving average (EMA) generator’s

parameters for evaluation. We also validate their profits empirically in Figure 2 and Table 2.

However, to the best of our knowledge, EMA samples are not currently used to guide the training process

by any means, and in this work, we try to address this gap.

Model SNGAN [46] SNGAN BigGAN [9] StyleGAN2 [29]

Dataset LSUN Church LSUN Bedroom Imagenet Cifar10

Generator 8.62 18.00 26.08 11.93

Generator-EMA 7.93 13.48 10.14 6.32

Table 2: Best Frechet Inception Distance (FID) [24] scores of various models without and with parameter

smoothing. EMA gives significant improvement in all cases.

8



3 Method

3.1 Formulation

⍺

𝜷

𝜷

Figure 3: Protocol of training with LeakyEMA. The trainable components are denoted by blue, the images

labeled as “real” are colored in green.

The superior quality of θEMA is widely used during evaluation but is not used for training. Now we

propose to exploit it inside the discriminator training step by replacing a subset of real images with the

ones generated by GEMA. Formally, our modified objective is the following:


ψ∗ = argmin

ψ
LD(Gθ, Dψ; p̃d(x));

θ∗ = argmin
θ

LG(Gθ, Dψ);

(4)

where p̃d(x) is a mixture of the distribution defined by GEMA and the empirical distribution:

p̃d(x) = βpG(x; θEMA) + (1− β)pX(x); pX(x) = U({xi ∈ X}) (5)

and β determines the portion of the real images replaced by the EMA samples in each training batch.

We refer to this modification of the training protocol as LeakyEMA. Training with LeakyEMA is

schematically presented in Figure 3, and we can effortlessly implement it in a few lines of code. Note

that on each training step, we use the same noise samples z for both G and GEMA, a choice we ablate in

section 4.1. In experiments, we observed that it is necessary to use LeakyEMA on the later epochs for

large-scale tasks since, on the earlier epochs, the EMA samples are poor and cannot reliably guide the

training. Therefore, LeakyEMA is used only after the N -th training iteration, where N is a hyperparameter

of our method. In the experimental section 4.1, we ablate on both β and N and provide recipes on setting

them.

3.2 Computational complexity

Since LeakyEMA requires several EMA samples for each training batch, each optimization step has a

computational overhead compared to the conventional GAN training. However, this overhead includes
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Figure 4: Comparison of the conventional and LeakyEMA protocols trajectories for Dirac-GAN. We depict

the initial state, the (desired) equilibrium point and the trajectories of (θ, ψ) and (θEMA, ψ).

only a forward pass in the EMA generator and does not increase the complexity of backward passes in

both generator and discriminator. Moreover, the overhead appears only during the last iterations, so the

increase in total training time was negligible in all our experiments.

3.3 Connections with Instance Noise

In this section, we explain the relationship between the proposed LeakyEMA training and the well-known

instance noise (IN) trick [59, 4]. Both LeakyEMA and IN are motivated by the disjoint supports problem

when the model and data distributions do not overlap. In this case, it is easy for the discriminator to

achieve perfect classification, which results in vanishing gradients for the generator, therefore gives slow

and unstable optimization. As discussed in section 2, IN mitigates this problem by adding isotropic

Gaussian noise to both real and fake images. However, in high-dimensional spaces, only a small amount of

noisy samples fall into the overlap created by it due to the isotropy of noise and the curse of dimensionality.

Therefore, most of the samples are still “easy” for the discriminator. In contrast, LeakyEMA is based

on the previous evidence [30, 9, 28] that EMA samples are more appealing compared to the generator

samples (see Figure 2). In other words, in terms of realism, EMA samples are “intermediate” between real

and fake images. Hence, it is natural to use them to create the overlap between distributions.

3.4 Local Convergence with LeakyEMA

For a theoretical understanding of the regularization effect stemming from LeakyEMA, we follow [43]

that considers the behaviour of GANs with various regularizers on a simple 1-dimensional problem and

demonstrates that not all of the methods are locally convergent with gradient descent. Using the same

analysis, we study the gradient vector field associated with the GAN training dynamics and show that

LeakyEMA is locally convergent. In particular, we prove in the supplementary A that all Jacobian

eigenvalues of the field have negative real-part in the neighbourhood of the Nash equilibrium. Figure 4

validates this finding empirically.
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4 Experiments

In this section, we evaluate LeakyEMA on a large number of standard benchmarks.

First, we investigate its sensitivity to hyperparameters and perform ablation analysis. Second, we

demonstrate that LeakyEMA can be successfully combined with established stabilization techniques.

Finally, we provide aggregated results across a wide range of datasets and architectures, including the

BigGAN model [9] on a challenging Imagenet task. For quantitative evaluation, we use the Frechet

Inception Distance (FID) [24] computed on the image representations extracted from the InceptionV3

model [61]1. Unless stated otherwise, we always report the quality of samples produced by the EMA

generator.

4.1 Ablation and sensitivity to hyperparameters

In this part, we use the ResNet-SNGAN [46] architecture, which generates 128× 128 images, originally

proposed in [46] (see table 6a) . We use Ndis=5 discriminator updates per single generator step. The

optimization is performed by Adam [34] with a constant learning rate of 2× 10−4 and β1=0.5, and we

accumulate the generator weights in the EMA version with α=0.999. Training with LeakyEMA proceeds

in two stages. During the first stage, we train GAN in a conventional way for N steps with a Hinge

variant of adversarial training objective [46] and a batch size of 64. After N steps, the second stage starts,

where the EMA samples replace a portion of real images in each training batch.

N β = 0 β = 0.25 β = 0.5 β = 0.75

FID

80k 7.94±2.40 5.33±0.45 4.21±0.21 5.05±0.63

100k 7.94±2.40 5.26±0.47 4.15±0.31 5.01±0.61

120k 7.94±2.40 5.25±0.47 4.17±0.24 4.83±0.35

140k 7.94±2.40 6.13±1.83 5.62±2.52 6.06±2.04

0 25000 50000 75000 100000 125000 150000 175000 200000

Train iteration

4

6

8

10

12

14

16

FI
D

SNGAN
SNGAN + LeakyEMA

Table 3: Left: Best performance of SNGAN trained on LSUN-Church dataset (128× 128) with different

values of β and N . β = 0 corresponds to training without LeakyEMA, therefore, numbers in the second

column are the same. Right: Evolution of FID learning curves in Default and LeakyEMA regime (with

β = 0.5, N = 100k).

Sensitivity to β and N . First, we investigate how LeakyEMA performs with different values of β and

N hyperparameters. The complete evaluation of SNGAN on the LSUN-Church dataset [69] is provided in

Table 3. All the models are trained for 250K generator optimization steps, and we report mean and std

values computed for five independent runs. The key observations from Table 3 are the following:
1https://github.com/mseitzer/pytorch-fid
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• LeakyEMA generally benefits generation performance in a wide range of β values. The lowest FID

obtained with LeakyEMA is about four, while the best FID obtained with a conventional training

(β = 0) is about eight.

• By varying β, one can interpolate between the conventional training (β = 0) and pure self-training

(β = 1), which always collapsed in our experiments. In this ablation, β = 0.5 appears to be a “sweet

spot” in terms of FID; therefore, we use this value in the following experiments.

• In Table 3, we consider only N values that are close to the moment when a learning curve of the

conventional training starts to slide down slowly, as shown in the right part of 3. Intuitively, at this

moment, EMA samples are already good enough to serve as a supervision signal, but the model has

not collapsed yet. Typically, LeakyEMA is not sensitive to N chosen within this region. However,

too large N values (N = 140k) correspond to partially collapsed models, which results in inferior

FID. In general, LeakyEMA increases generation quality for all N chosen after the training curve

decline slows down.

Ablation: Should EMA be “synced” with the generator? In principle, one could perform the

conventional GAN training until convergence and then use the obtained EMA using its samples to train a

new generator with our technique. Despite longer training, such protocol could be reasonable, since in

this case, EMA samples have higher quality compared to the EMA samples from intermediate steps, thus,

it could provide more reliable supervision. Nevertheless, we show that this “async” strategy is inferior to

the setup when the generator and its EMA version are updated synchronously. In particular, we compare

three possible versions of training with LeakyEMA:

Baseline

(no leaking)

EMA

sync

EMA

async-noise

EMA

async-model

SAME

random

SAME

top-k

FID 7.93 4.15 4.16 5.85 8.32 7.91

Table 4: Performance of different methods for leaking in SNGAN on the LSUN-Church dataset.

1. EMA-sync, a fully synchronized version, where the samples from the current EMA guide training.

The previous experiments were performed with this version.

2. EMA-async-noise, the same as above, but on each training iteration, different noise samples are

used to produce fake images from the generator and EMA. Note that in the EMA-sync version,

the same noise samples are always used.

3. EMA-async-model, a version where the previously pre-trained (fixed) EMA is used to guide the

training on all iterations.

We report the performance of three different versions in Table 4, which demonstrates that the asynchronous

EMA-async-model protocol is inferior in terms of FID. These results highlight the importance of
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SNGAN standard training

SNGAN + LeakyEMA

N = 80K

Figure 5: Evolution of a generated sample G(z) with a fixed z. Top row : conventional; bottom row :

LeakyEMA training, which reduces the sample variation over the training steps.

synchronicity between the current generator and the corresponding EMA, which is crucial for EMA

samples to serve as a “connection” of the model and data distributions. While the synchronicity of the

noise samples does not affect the LeakyEMA performance, we recommend using the EMA-sync version

due to the simplicity of implementation.

Ablation: Are EMA samples necessary? To verify that the samples from the generator itself cannot

replace EMA samples in our approach, we perform the following experiment. Instead of using EMA

samples to replace a portion of real images, we tried to use random generator samples (SAME-random)

and generator samples that are “the most realistic” for the current discriminator (SAME-top-k). We use

ResNet-SNGAN on LSUN-Church with N=100K and β=0.5. In both cases, the performance was equal

or inferior to the ResNet-SNGAN trained conventionally (see Table 4). Thus, this experiment provides

additional evidence that the superiority of EMA over the generator is a vital ingredient of LeakyEMA

success.

4.2 Comparison with other regularizers

In these experiments, we show that LeakyEMA can be combined with established stabilization techniques.

In particular, we evaluate the training with LeakyEMA using the WGAN-GP [23] and the SNGAN

[46] models. For a fair comparison, we use the same model architecture as described in the ablation

section. The exact hyperparameter values are provided in supplementary. We compare the models on

three datasets from different domains. In all datasets we resize images to 128× 128.

1. LSUN-Church [69] containing outdoor scene images with multiple details, challenging to generate

properly.

2. LSUN-bedroom [69], containing indoor images of bedrooms.

3. FFHQ [28], containing human face images.
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Model Church Bedroom FFHQ

WGAN-GP 9.51 12.66 —

WGAN-GP+LeakyEMA 8.62 11.61 —

SNGAN 7.93 13.48 14.80

SNGAN+LeakyEMA 4.15 4.67 11.87

Table 5: Training with LeakyEMA combined with previous stabilization techniques.

Comparison of WGAN-GP and SNGAN with the conventional and LeakyEMA training on three datasets

is presented in 5. We choose N to be the iteration corresponding to the lowest FID obtained in the

conventional protocol for all experiments, but not larger than 140k. “—” in a table cell denotes that

WGAN-GP did not converge on the dataset.

In all datasets, LeakyEMA provides a significant performance boost both in terms of FID and subjective

visual quality. In Figure 5, we illustrate the evolution of a particular sample during the conventional

training and during the LeakyEMA training (with N=80K and β=0.5) for SNGAN trained on Bedroom.

To produce the top row, we consider a checkpoint of the generator at the step N=80K, where the

LeakyEMA training starts, and train it independently with β = 0. Notably, our technique stabilizes the

sample variability over training steps and also increases its quality.

4.3 Large scale experiments

Having established the benefits of our method over existing regularization techniques, we evaluate it across

a wide range of tasks, including the challenging Imagenet benchmark. In the last experiment, we use the

publicly available PyTorch implementation of BigGAN2.

Model BigGAN SNGAN SNGAN SNGAN StyleGAN2 StyleGAN2 StyleGAN2

Dataset Imagenet Church Bedroom FFHQ Cifar10 Church Bedroom

Resolution 128× 128 128× 128 128× 128 128× 128 32× 32 256× 256 256× 256

Default 10.14 7.93 13.48 14.80 6.32 3.10 7.76

+ LeakyEMA 8.85 4.15 4.67 11.87 5.91 3.48 4.05

Table 6: Comparison of various default models with their LeakyEMA versions.

The aggregated results are provided in Table 6. In general, our method performs favourably across a

wide range of setups. Unfortunately, we found that our technique mostly fails when combined with

StyleGAN2 on large-resolution datasets, a phenomenon to be studied in future work.

We also compare our best configuration with the state-of-the-art checkpoint provided by the BigGAN

authors3 in Table 7. Along with FID, we use Precision and Recall metric [36] computed with embeddings
2https://github.com/ajbrock/BigGAN-PyTorch
3https://drive.google.com/file/d/1nAle7FCVFZdix2--ks0r5JBkFnKw8ctW/view
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FID Precision Recall

Imagenet 128× 128

BigGAN 10.14 0.92 0.21

BigGAN+LeakyEMA 8.85 0.91 0.25

Table 7: Comparison of the model trained with LeakyEMA and the publicly available state-of-the-art

BigGAN checkpoint.

from Imagenet pre-trained VGG. The BigGAN trained with LeakyEMA achieves significantly higher

Recall, indicating that our LeakyEMA improves the model coverage. We get similar results using more

advanced Density and Coverage metrics [47].

In Figure 6, we plot Precision-Recall and FID-IS [56] curves obtained by varying a truncation value

in a range [0.3, 1.0] [9], which is a standard way to quantify the quality-diversity tradeoff. The Big-

GAN+LeakyEMA outperforms the standard BigGAN across all operating points.
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Figure 6: The FID-IS (left) and Precision-Recall (right) curves from varying truncation values linearly

from 0.3 to 1.0 for the best model obtained with LeakyEMA and the publicly available BigGAN.

5 Conclusion

Despite the recent progress in stabilizing GANs, the training of large-scale models on complex multi-modal

datasets, e.g., Imagenet, is still challenging. This thesis proposed a simple modification to the GAN

training protocol that leverages an additional supervision signal from the generator parameters averaged

over previous optimization steps. Our technique is simple and efficient, resulting in substantial empirical

improvements on the considered benchmarks, including Imagenet. Furthermore, the proposed approach

allows for certain theoretical guarantees of local convergence. We expect that given the simplicity and

empirical success, an idea of using mean teachers for GANs can be elaborated further from both practical

and theoretical standpoints.
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A Theoretical convergence of LeakyEMA

This section seeks to get a theoretical understanding of why applying the LeakyEMA technique improves

GAN performance. Since the analysis of a general large-scale setup is intractable, we resort to a

substantially simpler problem where:

• Distributions of generated pG and real pd data have disjoint supports;

• The discriminator D is optimized jointly with generator G, rather than trained until convergence.

Recently, [43] proposed a one-dimensional toy setup that satisfies both of those requirements and demon-

strated that a variety of regularization techniques fail to achieve the desired solution on it. We use it as a

motivating example to prove that models trained with the LeakyEMA trick improve convergence.

Definition 1. The Dirac task is a problem where:

1. The input space X is R;

2. Ground-truth distribution pd(x) is δ0(x);

3. Generator outputs a distribution pG(x; θ) = δθ(x);

4. Discriminator is defined by D(x;ψ) = ψx.

We also consider a common nonsaturating objective for training: LG(θ;ψ) = EpG(x;θ)ϕ(D(x;ψ));

LD(θ;ψ) = EpG(x;θ)ϕ(−D(x;ψ)) + Epd(x)ϕ(D(x;ψ));

(6)

where ϕ(t) = − log(σ(t)) = log(1+exp(−t)) combines NLL objective with an output sigmoid nonlinearity4.

Using Definition 1, those objectives convert to: LG(θ;ψ) = ϕ(ψθ);

LD(θ;ψ) = ϕ(−ψθ) + ϕ(0).

(7)

Additionally, let us define ω = (θ, φ)T as a joint parameter space which dynamics we analyse. Note that,

since ∀t ϕ′(t) = −e−tσ(t) < 0, the Dirac task has a single possible Nash equilibrium (θ∗, ψ∗) = (0, 0).

Following [43], we study the linear (or exponential) stability of different methods around this point by

switching from discrete to infinitesimal dynamics and linearizing the obtained differential equation on w

around zero.

We start by revisiting the result of [43]:
4Note that ϕ(t) = −t with Lipschitz constraint on D gives WGAN objective
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Lemma 1. A GAN with default nonsaturating objective on Dirac task is not linearly stable at the

equilibrium (θ∗, ψ∗) = (0, 0).

Proof. The standard simultaneous gradient descent on the objectives (7) gives updates of the form:

ωt+1 = ωt + ηv(θ;ψ); (8)

where v(θ;ψ) = (−∂LG(θ;ψ)
∂θ ,−∂LD(θ;ψ)

∂ψ )T is a gradient vector field, and η is a learning rate. In the limit

of infinitesimally small t this gives the following differential equation:

ω̇ = v(θ;ψ) =

−ϕ′(ψθ)ψ
ϕ′(−ψθ)θ

 . (9)

By linearizing this system around equilibrium point (0, 0) we get:

ω̇ =

−ϕ′(0)ψ
ϕ′(0)θ

 =

 0 −ϕ′(0)
ϕ′(0) 0

ω. (10)

Thus, the eigenvalues of its Jacobian are λ1,2 = ±ϕ′(0)i with Re(λ1,2) = 0, which implies the system is

not linearly stable.

As demonstrated by [43], similar results hold for both Default GAN, WGAN, and WGAN with Gradient

Penalty.

Now we consider adding an exponential moving average of generator parameters θema as a stabilization

trick. Note that by definition θγema(t) ≡ γθγema(t− 1) + (1− γ)θ(t), which in continuous case (1 −→ ds)

naturally converts to:

θγema(t) ≡ (1− γ)
∫ t

0

γt−sθ(s)ds. (11)

Let ξ ≡ θγema(t)/(1− γ) =
∫ t
0
γt−sθ(s)ds. Then it’s time derivative is:

ξ̇ = γ̇t
∫ t

0

γ−sθ(s)ds+ γtγ−tθ(t) = ln(γ)γt
∫ t

0

γ−sθ(s)ds+ θ(t) = ln(γ)ξ(t) + θ(t). (12)

Recall that training with a LeakyEMA approach means switching from a ground truth distribution pd(x)

to a “regularized” distribution:

p̃d(x) = βpG(x; θ
γ
ema) + (1− β)pd(x). (13)

In the case of Dirac GAN, this means that the original objectives (7) convert into:

 LLeaky
G (θ;ψ) = ϕ(ψθ);

LLeaky
D (θ;ψ) = ϕ(−ψθ) + (1− β)ϕ(0) + βϕ(ψθγema).

(14)

We are ready to state our main result.
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Figure 7: Maximum real components for roots of characteristic polynomial (17) with nonsaturating (left)

and Wasserstein (right) objectives. We ablate 106 combinations of β and γ.

Lemma 2. A GAN trained with a regularized nonsaturating objectives (14) is linearly stable at (0, 0).

Proof. Consider an expanded parameter space ω̃ = (θ, ψ, θγema)
T . Then, based on Lemma 1 and equa-

tion (12) the gradient vector field of the system (14) is:

v(w̃) =


−ϕ′(ψθ)ψ
ϕ′(−ψθ)θ

0

+ ρ(w̃), where ρ(w̃) ≡


0

−βϕ′(ψθγema)θ
γ
ema

(1− γ)θ + ln(γ)θγema

 . (15)

Thus, around the equilibrium point (0, 0) linearized dynamics is:

˙̃w =


0 −ϕ′(0) 0

ϕ′(0) 0 −βϕ′(0)
(1− γ) 0 ln(γ)

 w̃; (16)

with the characteristic polynomial:

det(A− λI) =− λ3 + ln(γ)λ2 − ϕ′(0)2λ+ ϕ′(0)2(ln(γ) + (1− γ)β). (17)

We notice that it does not have any simple roots, so we solve it numerically with different values of β

and γ. In Figure 7 we observe maximum real components for the obtained eigenvalues and see that with

β > 0, they are negative, which concludes the proof.
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